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ABSTRACT

In the preceding research report, ONR/RR-82-1 (Information

Loss Caused by Noise in Models for Dichotomous Items), observations

were made on the effect of noise accommodated in different types of

models on the dichotomous response level. In the present paper, focus

is put upon the three-parameter logistic model, which is widely used

among researchers. An emphasis is put upon the speed of convergence

to the normality of the conditional distribution of the maximum

likelihood estimate, given a specific ability level.
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I Introduction

This is a continuation of the previous research report, which is

entitled, "Information Loss Caused by Noise in Models for Dichotomous

Items." In the present paper, we will focus our attention upon the three-

parameter logistic model, which is widely used among researchers as a

model for the multiple-choice test item in comparison with the normal

ogive model.

Throughout this paper, we shall solely consider the unidimensional

latent space. Let 8 denote the latent trait which assumes any real

number. In dealing with the multiple-choice test item, there exist two

distinct standpoints: 1) to treat the item as a dichotomous item,

classifying the correct answer into one category and all the other

alternative answers into the other, and 2) to treat it as a polychotomous

item by acknowledging each alternative as an individual resource of

information. In the former case, it is most common to define the binary

item score, ug , for item g and assign Ug -1 to the correct answer

and Ug = 0 to all the other alternative, incorrect answers. If we

accept the knowledge or random guessing principle, i.e., that the examinee

either knows the answer or guesses randomly, the three-parameter normal

ogive, or logistic, model must be an appropriate model. An advantage of

the model may be its simplicity. Two main disadvantages are, however, 0

that: 1) in many practical situations, the knowledge or random guessing

principle is not applicable, and 2) because of the noise caused by random

guessing, we must do without certain mathematical properties which

otherwise we could enjoy. If we take the second standpoint, we must

Sk
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estimate the operating characteristic of each of the incorrect alternative

answers, which sometimes are called distractors, in addition to the one

for the correct answer. The operating characteristic of a distractor is

called the plausibility function. A family of models for the multiple-

choice test item, which takes both the characteristics of each distractor

and noise caused by random guessing, has been proposed (Samejima, RR-79-4,

Final Report).

In comparison with the first standpoint, there is no question that

the second standpoint is better, in the sense that each test item will

provide us with a greater amount of information, which leads to the more

efficient estimation of the examinee's ability, or latent trait.

Although it requires more mathematical sophistication in dealing with it,

it may be time that researchers switch to the second standpoint and enjoy

its benefits. In estimating the plausibility functions of distractors,

methods and approaches for estimating the operating characteristics of

discrete item responses, such as Levine's (Levine, 1981) and Samejima's

(Samejima, 197 7 a, RR-77-1, RR-78-1 to RR-78-6, RR-80-2, RR-80-4, RR-81-3,

Final Report), will be useful. It has been found, amazingly, that many

existing multiple-choice test items have informative distractors. In the

future, however, it is desirable to modify the guidelines of test

construction to encourage test developers to include more informative 1.
distractors, and to show how and with what principle they should do that.

At present, unfortunately, this second tide is yet to come.

Researchers use the three-parameter logistic model even if their data

contradict the knowledge or random guessing principle. They claim that
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the function can still be an approximation to the operating characteristic 0

of the correct answer, regardless of the principle it may follow.

In the present paper, we will not question the adequacy of the

three-parameter logistic model further than we already have. We will put

ourselves in an assumption that, no matter what, we must use the three-

parameter logistic model in a given situation. To begin with, we shall

compare the three-parameter logistic model with the normal ogive model and S

find out, quantitatively, how much the three-parameter logistic model has

to lose and, qualitatively, what kinds of deficiencies the model has

because of the noise caused by random guessing.

II General Characteristics of the Three-Parameter Logistic Model

Let P (e) be the operating characteristic of the correct answer to

item g , or the item characteristic function. This function is the

conditional probability, given e , with which the subject answers item g

correctly. Since this conditional probability also equals the mean of the

conditional distribution of the binary item score ug , given e , P (0)

is also the regression of the binary item score ug on ability 8

Three-parameter logistic model is defined by the item characteristic

function such thpt

(2.1) Pg(a) - Cg + (l-cg) Tg9 (0)

where c g is a constant which equals the reciprocal of the number of the

alternatives attached to the multiple-choice test item, which is called



the guessing parameter, and T' (e) is given by

(2.2) 'Y(O) = [1 + expl-Da (O-b )}]1f

This function ,(s) itself is the item characteristic function in the

g

(two-parameter) logistic model. The two item parameters, a and b ,

in (2.2) are called the item discrimination parameter and the item

difficulty parameter, respectively. The item discrimination parameter

assumes any finite, positive value, and the item difficulty parameter

takes on any finite, real number. The seemingly redundant constant, D

is a scaling factor, which adjusts the value of the discrimination

parameter, ag • When we set this scaling factor equal to 1.7 , the same

set of two item parameters, a and b , provides us with -f' Ce) which
gg g

is very close to the corresponding item characteristic function, T (6) ,

in the normal ogive model (Birnbaum, 1968), which is defined by

(a (6-b)9 2 /
(2.3) P (e) - (2T) - 1 /2 f g - g eU 2 du

For this reason, the logistic model was originally developed as a

substitute for the normal ogive model. The former provides us with a

sufficient statistic, t(V) , which is given by
40

n
(2.4) t(V) - E ag ug

gfl

for the response pattern,

*
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*(2.5) V= (ul, u2 , ... 9~ .. d,

P where n is the number of items in the test. The maximum likelihood

estimate, OV of ability a is given by the solution of

n
(2.6) t(V) -E agT '(6)

g= I

9-1

for the (two-parameter) logistic model.

It has been reported (e.g., Lord, 1968) that an unrestricted

estimation of the three parameters in the three-parameter logistic model

provides us with the estimated guessing parameter which is substantially

different from the reciprocal of the number of the alternatives attached

to the multiple-choice item, and very often the value is less. Note that

this fact itself is an invalidation of the model. Many researchers stick

to the model, however, as a simple numerical approximation to some unknown

item characteristic function, which exists behind their empirical data and

whose formula and rationale are hidden. For this reason, this third

parameter cg wis sometimes called pseudo-guessing parameter. This

interpretation of the three-parameter logistic model casts some doubt,

uhowever. It has been shown (Samejima, RR-79-4; April 1980) that, if our

test item follows a model in the new family of models for the multiple-

choice test item, the operating characteristic of the correct answer, or

item characteristic function, tends to have a non-monotonic form. Figure

2-1 presents several typical item characteristic functions in Models A, B
itemchaactrisic fnctontens tohav a on-onotnlcfor. Fgur
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FIGURE 2-1

Typical Operating Characteristics of the Correct Answer in Models
A, B and C. Ability Distribution of a Group of Hypothetical

Examinees is Also Drawn by a Thick, Solid Line.
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and C, respectively, which were taken from one of i- previous works

(Samejima, RR-79-4). We can see in this figure that each operating

characteristic of the correct answer decreases in e up to a certain

level, and then starts increasing. If, for instance, our calibration

data have been collected for a group of subjects whose ability

distribution follows the density drawn by a thick, solid line in each

graph of Figure 2-1, and if, nonetheless, we assume the three-parameter

logistic model for our items, then the estimates of the parameters cg

will be less than the reciprocal of the number of the alternatives. For

the purpose of illustration, Figure 2-2 presents one of the curves of

Model A with ag = 1.00 ,b = -1.50 , -1.00 , -0.50 , 0.00 , 0.50

which was taken from the first graph of Figure 2-1, by a solid line, and

the item characteristic function in the three-parameter logistic model

with a. = 1.00 , bg = 0.60 and a pseudo-guessing parameter 0.05 by a

dotted line. Comparison of these two curves in Figure 2-2 suggests that,

for the interval of 6 where most of the subjects of our calibration data

are located, these two item characteristic functions are practically

identical. And yet the danger of accepting the three-parameter logistic

model as the approximation for Model A is obvious, for the discrepancies

are substantial outside this interval of 0 . If, for instance, the

estimated item characteristic function in the three-parameter logistic

model thus calibrated is applied for data collected for another group of

subjects whose ability distribution is shifted to a lower side of ,

then we will have a serious problem in analyzing our data because of these

discrepancies. This fact also implies the danger of using a single set of
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FIGURE 2-2

The Item Characteristic Function of an Item Following Model A with the Parameters
ag 1.00 , bxg = -1.50 % -1.00 , -0.50 , 0.00 and 0.50 for Xg 1,2,3,4,5

g
(Solid Line), and the One Following the Three-Parameter Logistic Model with

ag 1.00 bg 0.60 and Cg 0.05 (Dotted Line).
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data in model validation. It should be kept in mind especially when our

model fails to provide us with a sound rationale, as the three-parameter

logistic model with a pseudo-guessing parameter does.

It has been pointed out (Samejima, 1972, 1973) that, unlike the "1

(two-parameter) normal ogive and logistic models, the three-parameter

logistic model does not provide us with a unique modal point for the

likelihood function of every possible response pattern. We can write for

the basic function (Samejima, 1969, 1972), Au (Q) , in the three-
g

parameter logistic model,

I = -Dag'i'g( ) Ug -o0

(2.7) Au (P) gD g -1 u

A [(-C g g(e) {1-g(6) }1 [C +(-C )( 1  Ug 1

From (2.7) it is obvious that the basic function is not strictly decreasing

in e for ug = 1 , although it is for ug 0 . This leads to the fact

that, while either in the normal ogive model or in the logistic model the

item response information function (Samejima, 1972), I (0) , assumes
ug

positive values throughout the entire range of ability 8 for both ug -0

and u -1 , in the three-parameter logistic model there is an

ggInterval of e where ug9(e) assumes negative values for ug = 1.

This interval is (- a , g) , where eg is given by

(2.8) eg Mlog c + bg

Several observations were made for the item response information function A

*!



in the three-parameter logistic model, which was used as an example of the

Type B model (Samejima, ONR/RR-82-1).

III Loss of Accuracy in Ability Estimation Caused by Random Guessing

In this section, we shall observe the loss of accuracy in

estimating the examinee's ability caused by random guessing, by comparing

the local standard errors of estimation of different hypothetical tests

which follow the normal ogive model and the three-parameter logistic model

with cg 0.20 and cg = 0.25 , respectively. In so doing, we shall use

hypothetical tests of equivalent items, or items having identical item

characteristic functions. It was pointed out in the preceding section

that the three-parameter logistic model does not assure a unique maximum

for the likelihood function of every possible response pattern, and the

item response information function for ug - I assumes negative values

for the interval, ( ,g) • Thus it may be meaningless to discuss the

standard error of estimation when single maximum likelihood estimates may "@

not exist for some response patterns. If a test consists of equivalent

items, however, a unique maximum likelihood estimate always exists for

every response pattern, regardless of the model the items follow. In

fact, the simple test score t , which is the sum total of the binary item

scores, is a simple sufficient statistic for the response pattern V , and

the maximum likelihood estimate, Ot is obtained as the solution of 0

(3.1) (t/n) Pg (e)

a -0

9
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Note, however, that, if the item follows the three-parameter logistic 6

model, or any other model of Type B, (3.1) will not have a solution if

the relative test score, (t/n) , is less than c * In such a case, theg

maximum likelihood estimate is negative infinity (cf. Samejima, ONR/RR-82-1). I

In general, for a binary item g , the item response information

function, I U (e) , is defined by
UU

{ j a2 log Qg(O) ug -0
(3.2) lug(O) g2- -90 log Pg(0) us 1

where Pg(e) and Qg(e) [ l-Pg(e)] are the operating characteristics

of the correct and incorrect answers for item g , respectively. In the

three-parameter logistic model, P (e) is given by (2.1) with (2.2) LI

substituting for yg(O) , and, in the normal ogive model, it is replaced by

the right hand side of (2.3). The item information function, Ig(e) is

the conditional expectation of the item response information function,

Iug() , given e , and for a binary item g we obtain

(3.3) Ig(a) E[Iug J - (e) 2 [Pg )Qg(0)J .-

t has been shown (Samejima, RR-79-1, ONRIRR-82-1) that there exists some

stancy for the amount of information given by a binary item, and, in

particular, models of Type A which provide us with strictly increasing

item characteristic functions with zero and unity as the two asymptotes,

* and to which the normal ogive model belongs, the area under the curve of
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* the square root of the item information function equals v . It has also

been pointed out (Samejima, ONR/RR-82-1) that, for models of Type B,

whose item characteristic functions are given by (2.1), and to which the

three-parameter logistic model belongs, this area, Q , is given by

(3.4) Q = ir- 2tan-l[cg/(l-cg)]1/
2

When c 0.20 , Q equals, approximately, 0.705r , and when c 0.25
g g

it is approximately 0.6671r

When a test consists of only one item, the item information 5

function I (8) equals the test information function 1(8) , and the

characteristics of the square root of the item information function apply

directly for the square root of the item information function. In

practice, however, it is a highly unlikely case, and there usually are

more than one binary item in a test. The response pattern information

* function, Iv(0) , is defined by B

a2
(3.5) 1 - -a -log PV(

where PV(a) is the operating characteristic, or the conditional

probability, given e , of the response pattern V . When the conditional

independence of the item score distributions, given 6 , holds, this

operating characteristic is given as the product of the operating

characteristics of u g which belong to the response pattern V . The

I test information function is defined as the conditional expectation of the
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response pattern information function, given Q , and thus we can write

(3.6) (e) - E[Iv(0) 16] z 1(0) PV().
V

From (3.6), following through some mathematics, we obtain

n
(3.7) I(Q) - Ig(a)

g1

provided that the conditional independence of the item score distribution

holds.

We notice that, if the term under the summation on the right hand

side of (3.7) were the square root of the item information function,

instead of the item information functioa itself, then there would be a

similar constancy for the amount of test information as there is for the

amount of item information. As it is, however, there is no such constancy

for the square root of the test information function, and, therefore, 1
different combinations of items will provide us with different values for

the area under the curve of the square root of the test information

function. -

When a test consists of n equivalent items, however, there exists

a similar kind of constancy for the square root of the test information

function, for from (3.7) we can write P

(3.8) I(eIl 1 /2 n1/2[I-9) 1 / 2

I

I
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where I () is the common item information function. This indicates

that, when a test consists of n equivalent binary items following the

normal ogive model, the area under the square root of the test information

function equals n1/27 , regardless of the common item parameters, a8 9

and bg . of those equivalent items. (3.8) also implies that, if a test

has n equivalent binary items following the three-parameter logistic

model with cg = 0.20 , then the area under the curve of the square root

of the test information function approximately equals 0.705 nl/2  , and

with cg = 0.25 it equals approximately 0.667 nl/2n . Figure 3-1

illustrates the square roots of test information functions in the normal

ogive model and in the three-parameter logistic model with cg = 0.20 and

Cg = 0.25 with the other common parameters ag = 0.50 and bg - 0.00,

by a dashed line and two solid lines, respectively, for n 1 10, 20, 40,

60, 80, 100, 120, 140, 160, 180, 200 . A similar comparison with respect

to the three test information functions was made and is shown in Appendix,

as Figure A-1. -0

We notice in those graphs of Figure 3-1 that the two curves for the

three-parameter logistic model are much closer to each other, compared

with their relationship with the curve for the normal ogive model. The

values of 0g , which were obtained by (2.8), turned out to be

-0.9467282900048181 and -0.8154673627399685 for cg - 0.20 and

c 0.25 , respectively, and these values are also shown in Figure 3-1. 0

It is observed that the distances between the curve for the normal ogive

model and each of the two curves for the three-parameter logistic model

are rapidly enhanced as 0 departs from e in the negative direction. 1

:le
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We notice that those graphs of three curves can be used for other

sets of the parameters ag and bg , as long as we keep the values of cg

as they are. In so doing, we need to change the scale values shown or. the

abscissa and on the ordinate. If, for instance, we wish to use the graphs

for ag = 1.00 instead of ag M 0.50 without changing the value of

b (= 0.00) , then we must change the numbers on the abscissa of Figure

3-1 to their half values, and also make those numbers on the ordinate

twice as large as the original values. If we wish to use Figure A-i in

Appendix for the same purpose, then we will have to change the numbers on

the abscissa in the same way as we did for Figure 3-1 and make the numbers -@

on the ordinate four times as large as the original values.

By virtue of the asymptotic normality of the conditional

distribution of the maximum likelihood estimate V , given 0 (e.g.,

Kendall and Stuart, 1961, Samejima, 1975), the asymptotic regression of

0 on e equals 0 itself, i.e., the maximum likelihood estimate
V

is asymptotically conditionally unbiased, and the conditional distribution 0

1/2
is asymptotically normal with e and [I(e)] as its two parameters.

It has been shown (Samejima, 1977a, 1977b, Final Report) that even for a

relatively small number of items and a relatively small amount of test :6

information this asymptotic property can be used as a good approximation

to the conditional distribution of 8V . Figure 3-2 presents the interval

of which was obtained by using 0 as the regression of on e

and [I(b)] 1/2 as the standard error of estimation, which is plotted both

above and below the regression line. In this figure, the two curves are

drawn by solid lines for the normal ogive model, and they are drawn by -'S
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dashed and dotted lines for the three-parameter logistic model with

cg = 0.20 and Cg = 0.25 , respectively, for each of the ten tests of

equivalent items. The number of items in those ten tests are 20, 40, 60,

80, 100, 120, 140, 160, 180 and 200 , respectively. The common item

parameters are the same as those used in the eleven tests in Figure 3-1,

i.e., a = 0.50 and b - 0.00 . On both the abscissa and the ordinateg g

of Figure 3-2, two additional sets of numbers are shown in the smallest

and medium sizes to adjust the scales to the change of ag from 0.50 to

2.00 and 1.00 , respectively.

We can see in these ten graphs of Figure 3-2 that for relatively

large numbers of items the three-parameter logistic model provides us with

reasonably small confidence intervals for certain intervals of 0 , but

the accuracy of estimation drops radically as 0 departs from e in the

negative direction. Although this tendency is conspicuous for smaller

numbers of items, it is still clear for larger numbers of items, like

200 . The effect of noise caused by random guessing is obvious, and we

need to devise some way to make up for it if we must use the three-

parameter logistic model.

IV Loss in Speed of Convergence of the Conditional Distribution of
the Maximum Likelihood Estimate to the Normality

In the preceding section, we have observed the loss of accuracy in

ability estimation caused by random guessing, which is embedded in the

three-parameter logistic model. In so doing, we compared the normal ogive

model and the three-parameter logistic model with cg - 0.20 and

c = 0.25 , with respect to the confidence interval of the maximum
g
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likelihood estimate 5t . given e , which was approximated by the

unbiased regression and the reciprocal of the square root of the test

information function as the standard error of estimation. Those

confidence intervals are approximations, using the asymptotic normality of

the maximum likelihood estimate, given e

In this section, we shall focus our attention on the loss in the

speed of convergence of the conditional distribution of the maximum

likelihood estimate e to the normality, which is caused by random

guessing embedded in the three-parameter logistic model. In so doing, we

shall use five hypothetical tests of equivalent items, i.e., n = 20, 40,

80, 120, 200 , which were chosen out of the ten tests used in the

preceding section.

We notice that, with equivalent items, the conditional distribution

of the test score t , given e , is binomial, with n and P (e) as the
9

two parameters. Since there is one-to-one correspondence between the test

score t and the maximum likelihood estimate 6t . the probability

function of t also applies to the probability function of Ot ' if each

non-zero probability is assigned to e instead of t • Questions are

raised as to how close this discrete distribution is to N(e, {l(e)}- 1/2)

and if there are substantial differences between the two models with

respect to the speed of convergence to the normality.

We notice that in the normal ogive model t assumes negative and
t

positive infinities for t = 0 and t = n , respectively, whereas in the

three-parameter logistic model it does for t < ncg and t - n .

One measure of the speed of convergence to the normality, therefore, is the
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probabilities assigned to the negative and positive infinities in each

distribution, i.e., the greater these probabilties are, the slower the

convergence to the normality is. Table 4-1 presents these probabilities

assigned to the negative and positive infinities at each of the sixteen

equally spaced points of e for each of the five hypothetical tests of

equivalent items. We can see from this table that, in all five situations,

where the numbers of items are 20, 40, 80, 120 and 200 , respectively,

the sum totals of the probabilities assigned to the negative or positive

infinity on the three-parameter logistic model are substantially larger,

compared with the ones on the normal ogive model.

Since the probabilities assigned to the negative and positive

infinities are not zero in each conditional distribution of 6t ,given

e , the moments of each distribution are indeterminate. As a crude

measure, however, we shall compute the moments of each distribution by

simply "ignoring" the negative and positive infinities and their

corresponding probabilities. Tables 4-2 through 4-4 present the first

moment about the origin and the ,econd through fourth moments about the

mean thus computed, for each of the sixteen values of e . For

simplicity, the symbols , , and 14 are used for those

moments, which indicate

(4.1) E( tq)

and

i 0
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(4.2) EQk m( 1t 1)

for k = 2,3,4 . In the same table, also presented are the indices B1

and 2 and Pearson's criterion , which are defined by

(4.3) 1= 2 P-3
3 2

I2
(4.4) 2 P

2

and

(4.5) 6i( 2+3) [4(2 2-3%i-6)(4I2-31)]I

This criterion K is used to determine which type of Pearson's

distributions should be chosen to fit our empirical distribution (cf.

Elderton and Johnson, 1969; Johnson and Kotz, 1970), and those types are

given in the last columns of Tables 4-2 through 4-4.

We realize that those moments and indices cannot seriously be taken

into consideration unless the two probabilities assigned to the negative

and positive infinities, which are presented in Table 4-1, are negligibly

small. Those cases are indicated in Tables 4-2 through 4-4 by ** and *

the former of which indicates that the sum total of the probabilities

assigned to the finite values of is greater than, or equal to,

0.999999 , and the latter means that it is greater than, or equal to,

0.99 but less than 0.999999
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If a distribution is normal, then we will have 1 f 0.00 , 2  3.00

and the criterion K converges to zero. We anticipate that, since those

five hypothetical tests consist of equivalent items, in the normal ogive

model the convergence to the normality must be speediest at 6 b , and ..

in the three-parameter logistic model it must be fastest at

(4.6) = bg + (Dag)l log[{l-4c +(l+8c g)I 2 }{3-(1+8c g)i/ 2}]

at which the common item information function I (0) assumes the highestg

value. With our hypothetical tests of equivalent items, those values are

0.00 for the normal ogive model, 0.31428 for the three-parameter

logistic model with cg = 0.20 , and 0.36695 for the three-parameter

logistic model with cg = 0.25 .

Comparison of those three tables indicates that there exist

substantial differences in the convergence to the normality of the

conditional distribution of 6t , given 6 , between the results on the

normal ogive model and those on the three-parameter logistic model. For

example, for n = 200 , the result on the normal ogive model provides us

with the regression which differs from e by less than 0.01 in absolute

value, 6I which is less than 0.01 , 8 which differs from 3.00 by

less than 0.10 in absolute value, and K which is less than 0.10 in

absolute value, for as many as six points of 0 , i.e., -1.0 , -0.6 ,

-0.2 , 0.2 , 0.6 and 1.0 , whereas the same is true for the results on

the three-parameter logistic model only for three points of 0 , i.e.,

-0.2 , 0.2 and 0.6 in each of the two cases where c. 0.20 and
g
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c = 0.25 , respectively. As another example, for n = 80 , the above

is true for as many as four points of @ , i.e., -0.6 , -0.2 , 0.2 and

0.6 , on the normal ogive model, while at no point of e is it satisfied

on the three-parameter logistic model in either of the two cases where

c = 0.20 and c = 0.25 • If we relax this rule to i-01,<0.03
g g

31 < 0.05, 2-3 < 0.50, and KI < 0.25 , then the resultant number of

points at which this condition is satisfied is as shown in Table 4-5 for

each test and each model. From this table, too, we can see an obvious

effect of noise caused by random guessing in the three-parameter logistic

model on the speed of convergence of the conditional distribution of t

given 0 , to the normality.

Figures 4-1 through 4-3 present P , that is the regression of 0t

on 0 and the confidence interval ('- 1/2 , + I/2 plotted against1 12 1 I )2 ,

the sixteen points of e , together with the asymptotic, unbiased

regression with the confidence interval (e-{I(e)}- 1 / 2 , 9+{l(e)F 1 / 2 )

which were first presented in Figure 3-2 of the preceding section. Since

those moments were computed by "ignoring" negative and positive

infinities, we cannot take some sets of three points seriously if the

probabilities assigned to either negative or positive infinities, or both,

are substantially large. For this reason, in Figures 4-1 through 4-3, five

different symbols are used to indicate the magnitude of the sum total of

the probabilities assigned to the finite values of 9t . which are shown

in Table 4-6. The S shape observed in some of the graphs in those

three figures is caused by smaller values of the sum total of those

probabilities. In those graphs, when this sum is greater than, or equal
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TABLE 4-5
INumber of Points of 8 at which Jil-eJ < 0.03

0.05 , 182-31 < 0.50 and K < 0.25 , for

Each of the Five Tests of Equivalent Items
Following the Normal Ogive Model and the

Three-Parameter Logistic Model with
cg = 0.20 and cg 0.25 . ,

Normal 3-P.L. 3-P.L.
n Ogive cg=O. 20 cg=0.25

90

20 4 0 0

40 6 2 2

80 8 3 3
"@O

120 8 5 4

200 10 6 6

-4W

Ik0

II m III il I I ra/ll | i ;
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0

TABLE 4-6

Symbols for the Five Different Categories of
the Sum of the Probabilities Assigned to
Finite Values of the Maximum Likelihood

Estimates.

Lower Upper
Endpoint Endpoint Mark
(inclusive) (exclusive)

_- 0.80 K
0.80 0.90

0.90 0.95 A

0.95 0.99 0

0.99 - 0
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to, 0.999999 for two or more adjacent points of 6 , the solid circles are

connected by a thicker line.

We can see from those three figures that those regressions and

confidence intervals are very close to the asymptotic ones, for the points

of at which the sum total of the probabilities for finite values of

t  is no less than 0.99 and, especially, when the sum is greater

than, or equal to, 0.999999 , they practically lie on those lines.

Again, we can see substantial differences with respect to the agreement

between the results on the normal ogive model and those on the three-

parameter logistic model.

V Comparison of Tests of Non-Equivalent Items

We have seen in the preceding section that the speed of convergence

to the normality of the conditional distribution of the maximum likelihood

estimate, given e , is fairly high, even for a small number of equivalent

items, if the values of 0, are close to the point at which the amount of

test information is maximal, in each of the three cases in which the normal

ogive model and the three-parameter logistic model with cg - 0.20 and

* c = 0.25 are followed. The range of 0 for which this is the case isg

fairly small, however, for a smaller number of equivalent items, especially

on the three-parameter logistic model. We notice that this interval of 8

may be enhanced, if we use non-equivalent test items. For this reason,

in the present section, we shall observe the regressions and confidence

intervals of three hypothetical tests of ten non-equivalent items, which

follow the normal ogive model with the common discrimination parameter

I
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a = 0.50 and with the difficulty parameters b shown in Table 5-1
g g

for the ten items of each of the three tests, in comparison with those of

a hypothetical test of ten equivalent items which follow the same model

with ag = 0.50 and bg = 0.00. For convenience, hereafter, we shall

call any tests having the sets of difficulty parameters shown in Table 5-1,

Cases 1, 2 and 3, respectively.

As we did for the five hypothetical tests of 20, 40, 80, 120 and 0

200 equivalent items, the results of which were shown in the preceding

section, the four conditional moments, :i' 1 12 1 P3 and 14 , were

computed by "ignoring" the probabilities assigned to the negative and 4

positive infinities, for the hypothetical test of ten equivalent items and

for the three hypothetical tests of ten non-equivalent items. Table 5-2

presents those probabilities assigned to the negative and positive "

Infinities and tOeir sum totals, for the four hypothetical tests of ten

items. Unlike for the tests of equivalent items, for the three

hypothetical tests of non-equivalent items the test score t is not a A

simple sufficient statistic for the response pattern V , so the maximum

likelihood estimate OV  must be obtained as the solution of

(5.1) Au ( 0

where A ( ) is the basic function (Same jiin, 1969, 1972) defined by-

A log Qg( ) ug = 0(1.2) A (j

g ',= log () u,, I ,

4 0
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[4

TABLE 5-1

Difficulty Parameter b of Each of the

Ten Items in Each of the Three Cases.

Item Case 1 Case 2 Case 3

1 -2.7 -3.6 -4.5
2 -2.1 -2.8 -3.5
3 -1.5 -2.0 -2.5
4 -0.9 -1.2 -1.5
5 -0.3 -0.4 -0.5
6 0.3 0.4 0.5
7 0.9 1.2 1.5
8 1.5 2.0 2.5
9 2.1 2.8 3.5

10 2.7 3.6 4.5

S O
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with the item characteristic function P (a) replaced by the formula for
g

that of the normal ogive model, which is given on the right hand side of

(2.3), and Q (e) = - Pg(G). The conditional distribution of the

maximum likelihood estimate O' , given , cannot be simplified to any

form as we did for equivalent items using the probability function of the

binomial distribution of the test score, for the reqnonse pattern V is

not unidimensionally ordered, and for other reasons. Thus in obtaining

moments we must use the operating characteristic PV( ) itself as the

probability assigned to the maximum likelihood estimate eV I which is

I obtained from the operating characteristics of the item score through the

formula

(5.3) Pv(8) = u P (G)ug Qg(0)l
-ug

ugV

provided that the distributions of the Item score ug are conditionally

independent, given 0 , for all the items of the test. Thus the

computation of the moments is more complicated and time consuming, and we

must deal with as many as 2n different values of eV instead of (n+l)

* different values of a t  For this reason, we are forced to restrict our

observations to tests of only ten items, fn which the number of different

values of ev is 1,024Vm

Table 5-3 presents the four moments and indices V and And

Pearson's criterion K and distribution type, for twenty equally spaced

values cf 0 , -3.0 through 3.0 , for each of the four tests of ten

* Items. Tust as in Tables 4-2 through 4-4 , the syrOol ** indicates that
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the sum total of the probabilities assigned to the finite values of 9V

is greater than, or equal to, 0.999999 , and * means that it is greater

than, or equal to, 0.99 , but less than 0.999999 . We can see that none

of the rows of the table are marked with ** , unlike the other cases in .

which the number of items is 20 or greater, which we observed in the

preceding section. Comparison of the results of the three non-equivalent

cases with those of the equivalent case reveals that, around 0 = 0.00 ,

which equals the common difficulty parameter b for the equivalent case

and the mean of the difficulty parameters for each of the three non-

equivalent cases, the conditional distribution of 6V , given f , is -.

closer to the normality for a wider range of e , as the difficulty

parameters spread more widely. If we take the arbitrary criterion as we

did in the preceding section, i.e., p-Q[ < 0.03 , I < 0.05 , 0

2 -31 < 0.50 and K <0.25 , then this criterion is satisfied for the

six values of 0 , -1.0 , -0.6 , -0.2 , 0.2 , 0.6 and 1.0 , for Case 3,

while this number reduces to four in Case 2, and two for Case I and for -

the equivalent case.

Figure 5-1 presents the two kinds of regression plus confidence

interval for each of the four cases, which were observed in the preceding

section for each of the five equivalent tests on the normal ogive and on the

three-parameter logistic models. The two additional sets of numbers shown

on both the abscissa and the ordinate are the same scale changes for

a = 2.00 and a = 1.00 , that are shown in Figures 4-2 through 4-4g g

Note, however, following each scale change, the difflculty parameters in

* the three non-equivalent cases are also changed proportionally. We can

S
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see that in each case, those solid circles, which are based upon the sum

total of the probabilities assigned to the finite values of &V greater

than, or equal to, 0.99 , practically lie on the asymptotic regression

and the confidence interval, i.e., 0 and (e-{1()}11 2, e+{I(e)}- 1/2 ) .

There are substantial differences in the range of 0 for which this is

the case, however. This interval of e is (-2.2, 2.2) for Case 3

of the non-equivalent items, while it is only (-0.6 ,0.6) for the

equivalent case.

The square root of the test information function of each of the

three non-equivalent cases is shown by a dashed line in each graph, in

both Figures 5-2 and 5-3. In the same figures, also presented by solid

lines are the square roots of the test information functions of the ten

item tests which are based upon the three-parameter logistic model with

the same parameters ag and b and the third parameter, cg - 0.20 and

cg = 0.25 , respectively. The critical values, eg . of the first items

of the three tests are -0.3646728290004818D 01 , -0.4546728290004819D 01

and -0.5446728290004819D 01 for cg 0.20 , and -0.3515467362739969D 01

-0.4415467362739969D 01 and -0.5315467362739969D 01 for Cg - 0.25

In Case 1, the values of e increase by 0.6 as the value of the
g

difficulty parameter increases, while in Cases 2 and 3 the steps are 0.8

and 1.0 , respectively.

If we take the strategy not to use the informaton obtained from

item g for the interval of e , (- , 0g) , then the square root of the
g

test information function will be reduced to the curve plotted by a dotted line

in each of the six graphs of Figures 5-2 and 5-3. In this way, we can
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FIGURE 5-2

Square Roots of Test Information Functions of Each of the Three Tests of
Ten Non-Equivalent Items in the Normal Ogive Model (Dashed Line) and in

the Three-Parameter Logistic Model (Solid Line). The Latter Is Reduced

to the One Drawn by Dots When Each Item Information Function Is
II Truncated at 0 Whose Value Is Shown in Each Graph.

g c =0.20

I-g
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FIGURE 5-3

Square Roots of Test Information Functions o7 Each of the Three Tests of
Ten Non-Equivalent Items in the Normal Ogive Model (Dashed Line) and in
the Three-Parameter Logistic Model (Solid Line). The Latter Is Reduced

* to the One Drawn by Dots When Each Item Information Function Is
Truncated at 0 Whose Value Is Shown in Each Graph.

g c =0.25
g
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avoid multi-modal likelihood functions which may occur for some response

patterns if the items follow the three-parameter logistic model. Further

investigation as to the merit and demerit of this strategy is yet to come,

however, and its results are left to another paper. The corresponding six

graphs of the test information functions are presented as Figures A-2 and

A-3 in Appendix.

VI Discussion and Conclusions

The three-parameter logistic model was compared with the normal

ogive model using hypothetical tests of equivalent items, mainly with

respect to the speed of convergence of the conditional distribution of

the maximum likelihood estimate, given 0 , to the normality, and it

was found out that the effect of noise caused by random guessing is

substantial, especially for the values of 0 less than the critical value

Some observations were made on the normal ogive model as to how

the interval of 0 for which the approximation of the conditional .

distribution by the normality is acceptable can be enhanced by using non-

enuivalent test items.

This is jus, a beginning of the investigation about how and In

what ways we can amend the deficiencies of the three-parameter logistic

model which are caused by random gvessing. The effective use of the

critical value 9 may be one solution to the problem, which will be
g

I nve~t I gat ed fur t her
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